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Abstract

A bubble transport equation, based on the theory of bubble nucleation and growth, is applied for the
analysis of two-phase ¯ashing ¯ows. Spontaneous nucleation at the ¯ashing inception point and
heterogeneous nucleation in the liquid bulk are used as boundary and initial conditions, respectively.
Analytical solution of the transport equation yields a constitutive relation for the net vapor generation
rate along the tube, which is required for closure of a two-¯uid set of conservation and balance
equations. Model predictions, in terms of ¯ow rates and void fraction distributions, compare favorably
with measured data. A mechanistic representation of the thermodynamic and transport conditions at the
¯ashing inception point is described. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flashing ¯ows are encountered in a variety of industrial and geo-thermal processes, such as
volcanic ¯ow, two-phase ¯ow in boilers and steam generators, ¯ow of saturated and subcooled
liquid in pipes and in converging-diverging nozzles, cryogenics and two-phase critical ¯ow
during a hypothetical loss of coolant accident in nuclear reactors (Elias and Lellouche, 1994).
Flashing occurs when liquid is brought into a metastable state by intense heating or rapid
depressurization. At a certain degree of superheat, a limit is reached (often termed `¯ashing
inception point') at which vapor is suddenly generated in an explosive manner. Vapor
generation persists downstream of the ¯ashing inception point at a lower rate as a result of
heterogeneous nucleation and growth of existing bubbles. Realistic modeling of ¯ashing ¯ows
must, therefore, consider both the instantaneous nucleation at the ¯ashing inception point as

International Journal of Multiphase Flow 26 (2000) 191±206

0301-9322/00/$ - see front matter # 2000 Elsevier Science Ltd. All rights reserved.
PII: S0301-9322(99)00011-7

www.elsevier.com/locate/ijmulflow

* Corresponding author.



well as the continuously varying number density and size distribution of the bubble population
further downstream.
The thermodynamic conditions at the ¯ashing inception point have been rigorously studied,

both theoretically (Alamgir and Lienhard, 1981; Saha et al., 1984; Skripov et al., 1988; Lee and
Schrock, 1990; Elias and ChambreÂ , 1993) and experimentally (Reocreux, 1974; Wu et al., 1981;
Alamgir et al., 1981). The degree of superheat required for initiating nucleation has been
shown to depend on the ¯ow and surface conditions as well as on the rate of depressurization
or heating. In slow transients, the degree of superheat at the onset of ¯ashing may be
considerably lower than the kinetic limit of nucleation. On the other hand, at higher heating or
decompression rates, only some small fraction of the existing nucleation sites in the liquid is
activated before the liquid superheat approaches the maximum nucleation limit. Thus, at
extremely rapid transients the liquid superheat approaches the value determined by random
density ¯uctuations that lead to homogeneous nucleation. These extreme situations are,
however, rarely encountered in engineering processes. For a typical ¯uid ¯owing in a pipe the
initial bubble formation is dominated by heterogeneous nucleation.
Vapor generation downstream of the ¯ashing inception point is a relative slow process. In

pipe ¯ow (Reocreux, 1974), the ¯uid may accelerate for more than 100 ms before reaching
critical conditions. At higher decompression rates, typical to ¯ow in a converging-diverging
nozzle (Wu et al., 1981), the nucleation zone could be much shorter. Several studies attempt to
solve the heat and mass transfer phenomena in the nucleation zone downstream of the ¯ashing
inception point using a number of arbitrary parameters and assumptions to ®t the experimental
data. The most common approach is to neglect the nucleation downstream of the ¯ashing
point by assuming that the number density of bubble nuclei remains unchanged during the
process (Wolfert, 1976; Edwards, 1968; Dagan et al., 1993). While simplifying the analysis and
sometimes successfully predicts the critical mass ¯ux, this assumption does not necessarily
describe the correct physical conditions in the ¯ow channel.
Riznic and Ishii (1989) suggested a di�erential balance equation for the size-integrated

bubble number density. Size distribution was determined independently using an approximate
integral relation of the bubble growth equation. Analysis of the bubble number density along
the ¯ow path was based on wall nucleation and neglected homogeneous and bulk
heterogeneous nucleation. Yan (1991) using an eight-equation model to predict the ¯ow
parameters and the bubble density distribution in a critical ¯ashing ¯ow later studied these
phenomena. The initial explosive generation of nuclei at the ¯ashing inception point was
determined by integrating the bubble equation from the point of saturation to the ¯ashing
point. A statistical approach was recently applied by Guido-Lavalle et al. (1994) and by
Herrero et al. (1995) to derive a transport equation for non-condensable bubbles in gas±liquid
¯ows. A distribution function was de®ned to represent the varying number density of bubbles
of a given volume at a given position. The model accounts for bubble break-up and
coalescence phenomena but neglects evaporation and condensation. In general, the use of a
bubble transport equation in the analysis of non-equilibrium two-phase ¯ow, extends previous
models (e.g., Ardron, 1978) which considered only bubbles of uniform size.
The prime purpose of this work is to develop a mechanistic ¯ashing model which accounts

for both, non-equilibrium vapor generation at the ¯ashing inception point and bulk
heterogeneous nucleation along the ¯ow path. The model is based on the bubble transport
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equation derived by Elias & ChambreÂ (1984) for determining the bubble number density, and
utilizes a general correlation (Elias and ChambreÂ , 1993) for computing the e�ect of
heterogeneous nucleation. The thermodynamic conditions and the nucleation rate at the
¯ashing point are used to de®ne the necessary boundary conditions of the problem. Analytical
solution of the bubble transport equation is combined as a constitutive relation with a two-
¯uid set of balance equations to predict the pressure and void fraction along a circular duct.
Model predictions are validated against the experimental data of Reocreux (1974).

2. The bubble species equation

A mechanistic bubble species model has been derived in Elias and ChambreÂ (1984). In the
following, a consistent set of boundary and initial conditions is developed to enable the
implementation of the resulting bubble equation in a two-¯uid representation of ¯ashing
nonequilibrium two-phase ¯ows.
To derive the bubble equation, we characterize a vapor±liquid ¯ow by a concentration

function, N, de®ned as the number of bubbles of radius r lying between r and r+dr, per unit
volume of ¯uid and vapor mixture, per unit radius di�erence, dr. The number density of
bubbles whose radii lie between r and r+dr is, accordingly, Ndr.
Neglecting bubble coalescence and break-up, the number density of bubbles in a volume

element bounded between z and z+Dz and between r and r+Dr, is de®ned by two processes:
bubble convection and bubble growth. Since in a steady-state, the rate of change in the total
mass of bubbles in the volume must vanish, we get:

0 � A�z�rG�z�Dz
8<:
�
N
Dr

Dt

������
z,r

ÿ
�
N
Dr

Dt

������
z,r�Dr

9=;� Drf�ArGuGN � jz,r ÿ�ArGuGN � jz�Dz,rg �1�

where Dr/Dt is a substantial derivative, A is ¯ow area, r density, u velocity and the subscript G
refers to the vapor phase. The ®rst terms on the RHS of Eq. (1) describes the growth rate of
bubbles into and out of the radius range r to r+Dr. The second term de®nes the convection
rate of bubbles of radius r into the control volume through the face at z and out through the
face at z+Dz. Dividing Eq. (1) by DzDr and taking the limit as these dimensions approach
zero, we get after some rearrangements:

0 � @

@r

�
N
Dr

Dt

�
� 1

A�z�rG�z�
@

@z
�N�z,r�A�z�rG�z�uG�z�� �2�

In a volume element which travels with the speed of the vapor, the bubble radius can be
determined by (Forster and Zuber, 1954):

Dr

Dt
� b2�z,t��TL�z,t� ÿ Ts�z,t��2

r
, b �

����
3

p

r �����������������lrCp�L
p
hLG rG

�3�

where TL is the temperature of the liquid surrounding the bubble, Ts is the vapor temperature
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taken to be at saturation and h, l, r and Cp denote enthalpy, conductivity, density and speci®c
heat, respectively. The subscript L refers to the liquid phase. Denoting the initial radius of
vapor nuclei as ro > 0 and de®ning the new variables

n�z,t� �N�z,r�=r, bo� b�0�, to� 1

2

�
ro

boTs

�2

, t� 1

2

�
r

boTs

�2

ÿto, f�z� �
�
1ÿ TL�z�

Ts�z�
�2

;

h�z� �
�
b�z�
bo

�2 f�z�
uG�z� and g�z� � d

dz
ln�A�z�rG�z�uG�z��,

we get, after substituting Eq. (3) into Eq. (2):

h�z�@n�z,t�
@t

� @n�z,t�
@z

� ÿn�z,t�g�z� �4�

Eq. (4) is a bubble species equation which describes the bubble number density and radii
distribution, n(z,t ), along the channel. It is a ®rst order nonhomogeneous hyperbolic equation
which requires both `initial' conditions at t=0 and boundary conditions at z = 0, taken as the
point of ¯ashing inception.

2.1. Initial and boundary conditions

Along the ¯ow channel, foreign bodies, dissolved gases and surface irregularities in the liquid
bulk provide ample nuclei for vapor-bubble formation. Thus, the initial condition, n(z,0), can
be described as (Frenkel, 1955):

n�z,0� � n2�1ÿ E�z�� exp

�
ÿ cDG�z�

3kTL�z�
�

�5�

where E is the local volumetric void fraction, DG is the Gibbs' free energy of formation of a
critical vapor nucleus, k is Boltzmann's constant and n2 is a constant describing the normalized
number density of vapor nucleation sites in the liquid per unit radius di�erence.
Similar to the expression used in homogeneous nucleation of vapor bubbles (Hirth and

Pound, 1963), the maximum free energy for vapor-bubble formation is:

DG�z� � 16ps3�z�
y2�z�p2s �z��1ÿ rG�z�=rL�z��2

�6�

in which s is the liquid surface tension and y0( ps(TL)ÿp )/ps(TL) is a normalized di�erence
between the local pressure, p, and the saturation pressure, ps (TL), corresponding to the liquid
temperature.
The factor, c, in Eq. (5) is a dimensionless number between 0 and 1 which accounts for

heterogeneous nucleation in the liquid volume. In Elias and ChambreÂ (1993), c is formulated
as a function of the liquid reduced temperature, Tr, and a dimensionless rate of
depressurization, S:

E. Elias, P.L. ChambreÂ / International Journal of Multiphase Flow 26 (2000) 191±206194



c�z� � c1T
c2
r �z�Sc3�z� �7�

where

S�z� � S�z�rL�z�
�����������������������
2pmkTL�z�

p
16prG�z�s2�z�

, S�z� � uL�z�dp�z�
dz

�8�

and m is the mass of a liquid molecule.
The coe�cients c1 to c3 in Eq. (7) were estimated by a least squares ®t to a wide range of

experimental data as: c1=1506.1, c2=31.906 and c3=0.310. Note that Eq. (7) exhibits the
physically correct trend of parameters in that c approaches zero at very low rates of
depressurization (since c3 > 0) and c increases with S.
The exact value of n2 in Eq. (5) may depend on the local pressure and ¯ow rate. However,

for the range of conditions studied in two-phase critical ¯ow experiments, the e�ect of n2 on
the predicted mass ¯ux and void fraction was found to be small (Minzer, 1995). For the
conditions studied by Reocreux (1974), increasing n2 by a factor of 50 reduces the predicted
mass ¯ux by less than 5%. n2 was taken, therefore, as constant (n2=1022 mÿ5) in this study.
The boundary condition of Eq. (4), n(0,t ), represents the bubbles generated at the ¯ashing

point. Its derivation requires an independent estimation of the thermal hydraulic conditions at
the ¯ashing inception point (z = 0). At that point we consider a population of bubbles with
uniformly distributed normalized radii in the range of 0 to t1 (maximum radius, r1), such that:

n�0,t� � n1fU�t� ÿU�tÿ t1�g �9�
where U(t ) is the unit step function. To determine n1 and t1 one can equate the total rate of
nucleation, I, in a small section of the ¯ow channel, Dz, to the rate of nuclei removal by
convection. Thus:

IDz �
�r1
0

n1ruL�0�dr �10�

The radius, r1, in a temperature ®eld which varies between an initial value, TL(0), and the
saturation temperature corresponding to the minimum pressure at the ¯ashing inception point,
Ts( pm), was derived by Olek et al. (1990) as:

r1 � 2b
3
�TL�0� ÿ Ts� pm��

�����
tm
p

, �11�

where tm is the time required for a nuclei to reach a departure radius, r1.
Assuming the normalized density, n1, to be independent of r and using Dz=tmuL, we obtain

upon integration of Eq. (10):1

n1 � 9

2

I

b2�TL�0� ÿ Ts� pm��2
�12�

1 The authors are indebted to the reviewer for suggesting this form of n1.
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The ¯ashing inception pressure, pm, can be determined following Elias and ChambreÂ (1993)
where the dimensionless pressure, ym0 ( ps(TL)ÿpm)/ps(TL), is determined as a solution of the
transcendental equation:�

4S�0����
p
p

ps

�4 1

3dvb

�
DGm

kTLA�ym�ym

�3

� I

c3
�13�

where vb is the volume of a vapor molecule and d and A(ym) are dimensionless functions
de®ned at the ¯ashing inception point as:

d � ahrGhlg � rL�rL ÿ rG�
ps�ah � aprL�

,

A�ym� �
�
3vb

4p

�2=3
4prGpsym

rL

�����������������
2pmkTL

p

The thermodynamic derivatives, ah and ap are:

ah �
�
@rL

@hL

�
pL

, ap �
�
@rL

@pL

�
hL

The rate of heterogeneous nucleation per unit volume of liquid at the ¯ashing inception point,
I, can be calculated by the Zeldovich±Kagan theory (Skripov et al., 1988):

I � N 0
�����������
2s
pmB

r
exp

�
ÿ cDGm

3kTL

�
�14�

where N ' is the number density of the liquid molecules, B 1 1 is the cavitation factor (Blander,
1979) and the maximum free energy, DGm, is de®ned in terms of ym (Eq. (6)).

2.2. Solution of the bubble species equation

Solution of Eq. (4) by the Laplace transform method was derived by Elias and ChambreÂ
(1984). The solution yields the bubble population, n(z,t ), as a sum of two groups: bubbles
generated at the ¯ashing point, n1(z,t ), and bubbles generated along the ¯ow path downstream
of the ¯ashing point, n2(z,t ). The ®rst group is given by:

n1�z,t� � n1
m�0�
m�z� fU�tÿ a�z�� ÿU�tÿ �t1 � a�z���g �15�

where

a�z� �
�z
0

h�z 0 �dz 0, m�z� � A�z�uG�z� �16�
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Eq. (15) represents a positive pulse of magnitude n1m(0)/m(z ) and duration
a(z ) < t < (t1+a(z )).
The second group is given by:

n2�z,t� � m�z 0 �
m�z� n�z

0,0�, 0 < t < a�z�

n2�z,t� � 0, t > a�z� �17�
where z ' indicates the location at which the vapor-bubble was originated, given by the explicit
solution of

a�z 0 � � a�z� ÿ t �18�
Fig. 1 illustrates schematically the parameters a�ecting the solution. The bubble size parameter,
t, is plotted vs the distance from the point of ¯ashing inception (z = 0). Bubbles with radii in
the range of 0 to r1 are generated locally at the ¯ashing inception point. In addition, new
bubbles of radius corresponding to t=0 are continuously introduced along the channel. At a
given position, downstream of the ¯ashing point, the total number density function consists of
two populations, n1(z,t ) and n2(z,t ). Hence, the solution has a discontinuity at t=a(z ),
representing the maximum size of n2(z,t ), as noticed from Eq. (17). There are no bubbles
larger than the limit t1+a(z ), representing the size at z of a vapor bubble created at the
¯ashing inception point with dimensionless radius t1.
In the following Eqs. (15) and (17) are used to derive a vapor generation term.

Fig. 1. Bubble population along ¯ow path.
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2.3. Vapor generation in ¯ashing ¯ow

A vapor source term, G, can be readily derived by integrating the growth rate of all the
bubbles present at a given position in the liquid. This procedure yields (Elias and ChambreÂ ,
1984):

G � F�z�
m�z�

(
3

2

�0
z

n�z 0,0�m�z 0 �
������������������������
a�z� ÿ a�z 0 �

p
h�z 0 �dz 0 � n1m�0���t1 � a�z��3=2 ÿ a�z�3=2�

)
�19�

where

F�z� � 8
���
2
p

3
p�b�z�Ts�z��5A�z�rG�z�uG�z�f�z�: �20�

Thus, for a given liquid pressure and temperature one can determine n(z ',0) from Eq. (5),
a(z ) and m(z ) from Eq. (16) and solve Eq. (19) for the rate of vapor generation at point z in
the ¯ow channel. A more convenient form of Eq. (19) is obtained by approximating the
integrand using a ®rst order Taylor series, to yield:

G � F�z�
m�z�

(
3

2

��������
a�z�

p �0
z

n�z 0,0�m�z 0 �h�z 0 �dz 0 ÿ 3

2
��������
a�z�p �0

z

n�z 0,0�m�z 0 �a�z 0 �h�z 0 �dz 0

� n1m�0���t1 � a�z��3=2 ÿ a�z�3=2�
)
: �21�

Eq. (21) was used as a constitutive relation in the following two-¯uid model to predict the
spatial distribution of ¯uid conditions in critical two-phase ¯ow.

3. Two-¯uid model formulation

Upstream of the ¯ashing inception point the standard single-phase mass, momentum and
energy equations are used. Beyond incipient ¯ashing, the two-¯uid conservation equations
derived by Ishii (1975) are considered. To simplify the analysis we consider a steady-state,
adiabatic and one-dimensional ¯ow. The equations are averaged across the channel area by
assuming that the pressure and temperature across any section normal to the ¯ow are constant.
Furthermore, by considering the vapor to be saturated with respect to the local pressure, the
¯ow can be fully described by ®ve conservation equationsÐtwo mass, two momentum and one
energy:
Conservation of mass

d

dz
�ArkukEk� � Gk �22�
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Conservation of momentum

1

A

d

dz
�ArkEku2k� � ÿak

dp

dz
ÿ grkEk cos Y� Gk

A
�ZuL � �1ÿ Z�uG� �Mk ÿ Fk �23�

Conservation of mixture energy

AErGu
2
G

duG

dz
� A�1ÿ a�rLu

2
L

duL

dz
� A�1ÿ E�rLuL

dhL

dz
� AErGuG

dhG

dp

dp

dz

� �hlg � 1

2
�u2G ÿ u2L��G� Ag cos Y�rGEuG � rL�1ÿ E�uL� �24�

where u, p, r and A denote respectively the velocity, pressure, density, and cross section area at
axial position z in the duct. The subscript k denotes either the gas (k =G) or the liquid
(k =L) phase, E is the volumetric vapor concentration with EG=E and EL=1ÿE, and Gk is the
rate of increase of the phase mass per unit length due to phase change such that GG=G and
GL=ÿG as given in Eq. (21).
Before Eqs. (22)±(24) can be integrated, constitutive relations are required to de®ne the

interfacial conditions and the rate of interface mass and momentum transfer. Since the gas
phase is assumed to be dispersed within the liquid phase, the wall shear stress on the gas phase
is neglected, FG=0. The liquid phase wall shear stress is:

FL � 1

2

f

D
rLuL j uL j �25�

where D is the channel diameter. For turbulent ¯ow (Re > 4000) the friction factor, f, is
modeled in Cheremisino� and Gupta (1983) as:

1��
f

p � 1:14ÿ 2 log 10

 
e
D
� 9:35

Re
��
f

p !
�26�

In the analysis of Reocreux (1974) data, a roughness coe�cient, e=5 � 10ÿ9 m was found to
yield good predictions of the pressure distribution in the single-phase section of the channel.
The ¯ow Reynolds number in Eq. (26) is de®ned by the total mass ¯ux, G, and the liquid
viscosity, mL, as:

Re � GD

mL

�27�

The momentum transfer between the gas and liquid phases in Eq. (23) consists of two forces
per unit volume:

ML � ÿMG � E�FD � FVM� �28�
For bubbly ¯ow (E < 0.2) the interfacial drag force, FD, can be modeled as:

FD � 3

8
rL

CD

�r
�uG ÿ uL� j uG ÿ uL j �29�
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where the drag e�cient, CD, is given by Harmathy (1960) as:

CD � 4

3
�r

�
g�rL ÿ rG�
s�1ÿ E�

�1=2
�30�

For annular ¯ow (E> 0.9), FD is (Wallis, 1969):

FD � 2Ca

D
���
p
p rG�uG ÿ uL� j uG ÿ uL j �31�

where the interfacial friction coe�cient, Ca, is (Wallis, 1969):

Ca � 0:079Reÿ1=4G �1� 75�1ÿ E�� �32�
The vapor Reynolds number, ReG, is de®ned as:

ReG � rGDEuG

mG

�33�

For churn-turbulent ¯ow (0.2 < E< 0.9) FD is determined as a void weighted average value
between the prediction of Eq. (29) at E=0.2 and the prediction of Eq. (31) at E=0.9.
The variable, r-, in Eq. (30) denotes the average radius of the bubble population,

�r �
�

3E
4pNt

�
�34�

The total bubble number density, Nt, can be obtained by direct integration over the bubble
radii of n1 from Eq. (15) and n2 from Eq. (17). However, considering the functional relation
between t and z ' in Eqs. (16) and (18), the integration can be conveniently performed over z:

Nt � n1
r21
2
� �bTs�2

m�z�
�z
0

m�z 0 �n�z 0,0�h�z 0 �dz 0 �35�

The virtual mass force, FVM in Eq. (28), is considered only in the bubbly ¯ow regime (Ruggles
et al., 1989):

FVM � rLCVM

�
uG

duG

dz
ÿ uL

duL

dz

�
�36�

where the virtual volume coe�cient, CVM, is expressed as a function of the void fraction as:

CVM � 0:5�1� 12E2� �37�
The term containing Z in Eq. (23) represents the e�ect of evaporative momentum transfer.
Based on entropy production consideration (Wallis, 1969), Z=1/2 is used in this work,
implying that the e�ective velocity of the evaporated liquid is (uG+uL)/2. The inclination angle
of the ¯ow channel is measured such that for horizontal ¯ow cos Y=0 and for vertical up¯ow
cos Y=1.
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4. Results and discussion

The set of conservation equations was integrated numerically. For given ¯ow rate and inlet
pressure and liquid temperature, the single-phase steady-state equations were integrated along
the ¯ow channel until the ¯uid reached the ¯ashing inception superheat, ym, determined by Eq.
(13). Downstream of the ¯ashing inception point the set of two-phase Eqs. (22)±(24), was
solved subject to the inlet conditions and using the vapor generation rate, Eq. (21) and the set
of constitutive relations Eqs. (25) to (37). These were supplemented by the speci®c system
geometry and tables of thermodynamic and transport properties of water and vapor. The
integrals in Eqs. (16), (21) and (35) were considered as three ®ctitious state variables,

y1 �
�z
0

h�z 0 �dz 0 �38�

y2 �
�z
0

m�z 0 �n�z 0,0�h�z 0 �dz 0 �39�

y3 �
�z
0

n�z 0,0�m�z 0 �a�z 0 �h�z 0 �dz 0 �40�

Eqs. (22)±(24) and (38)±(40) constitute a set of eight coupled ordinary nonlinear ®rst-order
di�erential equations for the eight variables: p, E, uL, uG, TL, y1, y2 and y3. The set of
equations was integrated by a variable step Runge±Kutta procedure to yield the ¯ow
conditions along the ¯ow channel on the basis of a global error speci®cation. This method is
particularly e�cient for the solution of the present sti� equations.
The solution of the problem consists of setting up of an algorithm for the calculation of the

¯ow parameters of the two phases along the test section for a given pair of inlet pressure and
temperature. To predict the critical ¯ow rate we employ the methodology suggested by
Lemonnier and Selmer-Olsen (1992). It consists of postulating an inlet mass ¯ux and tracking
the changing ¯ow conditions along the pipe starting from the given inlet conditions. Depending
on the postulated mass ¯ux one can obtain two main families of solution curves of physical
interest. At lower mass ¯ux (smaller than the critical ¯ow rate), a subcritical ¯ow pattern
prevails and the numerical integration can be pursued up to the exit. Any ¯ow rate larger than
the critical ¯ow rate does not yield a valid ¯ow pattern, and the integration cannot be carried
out beyond a point located upstream of the critical section. In practice the critical ¯ow rate
can be approached numerically within a given precision. When a di�user section exists at the
exit of a straight pipe, the ¯ow becomes sonic in the straight section of the pipe and supersonic
downstream. The choking point may occur anywhere along the diverging section. Thus, the
numerical procedure concentrates basically on searching an inlet mass ¯ux for which the
solution represents a choked ¯ow.
The model has been applied to predict the steady-state ¯ashing experiments conducted by

Reocreux (1974) in a circular vertical channel consisting of two parts; a lower stainless steel
tube with an internal diameter of 20 mm and length of 2160 mm, and an upper di�user section
with an opening angle of 78 and a length of 327 mm leading to a cylindrical exit section with a

E. Elias, P.L. ChambreÂ / International Journal of Multiphase Flow 26 (2000) 191±206 201



diameter of 60 mm. Tests were conducted by introducing subcooled water at low pressures
(0.21±0.34 MPa) to the bottom of the test section (at a physical elevation of ÿ1.044 m).
Pressure and area-averaged void fractions were measured along the ¯ow channel.
The predicted critical mass ¯ux were within 23% of the measured data over the range of

conditions reported in Reocreux (1974). Figs. 2±7 show typical results of void fraction
distributions predicted by the present model in comparison with Reocreux's experimental data.
The length coordinate was normalized such that the di�user throat is at z/L= 1 and the test

Fig. 3. Comparison with Reocreux's test 403.

Fig. 2. Comparison with Reocreux's test 400.
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section inlet is at z/L=ÿ0.773. The model predictions are generally in good agrement with the
measured data for the entire length of the test section.
Fig. 8 illustrates the numerical results of the vapor generation rate and the liquid degree of

superheat along the tube for run ]400 of Reocreux (1974). Both G and DT substantially
increase toward the throat at z/L= 1 upstream of the choking plan. The void generation rate
rises more gradually downstream for about 0.1 m into the di�user section at which point both
G and DT reach their maximum values and start to decrease reaching near equilibrium
conditions at the exit plane.

Fig. 5. Comparison with Reocreux's test 409.

Fig. 4. Comparison with Reocreux's test 404.
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5. Conclusions

A vapor species equation was applied for the analysis of ¯ashing ¯ows in tubes. The model
accounts for both the process of explosive vapor generation at the ¯ashing inception point and
the continuous nucleation downstream, thus avoiding the usually made assumptions of
constant bubble number density and uniform bubble radius. Model predictions include the
thermal and transport conditions at the critical point and the details of the vapor population
along the tube.
A constitutive model for the vapor generation rate is derived from the analytical solution of

Fig. 7. Comparison with Reocreux's test 434.

Fig. 6. Comparison with Reocreux's test 432.
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the bubble species equation. The degree of thermal and mechanical nonequilibrium at the
throat has a signi®cant e�ect on the ¯ow in the di�user section. The good agreement between
the predicted results and the measured void fraction in the di�user section (Reocreux, 1974)
also attests to the credibility of the present ¯ashing model.
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